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First-order gradient correction 
for the exchange-energy density functional for atoms 
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Summary. Spurred by earlier discoveries by Deb and others that a first-order 
correction in the kinetic energy functional leads to an improved kinetic energy, 
a first-order gradient term is studied as a component of the gradient-corrected 
functional for atomic exchange energy. This term is shown to improve the local 
density approximation to the exchange energy more than does the usual second- 
order gradient correction. The imperative of  systematically deriving this gradient 
correction is discussed but not resolved. 
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I Introduction 

The exact energy functional E[Q] of density functional theory remains unknown, 
although much progress has been made both in the theory itself and in its 
computational implementation [1]. Many studies have been directed toward 
finding improved approximations to various components of E[ê]: the kinetic 
energy T[O], the exchange energy K[O], and the exchange-correlation energy 
Exc[O] of the K o h n - S h a m  method. We are here concerned with K[O]. 

For  a uniform electron gas, the exchange energy is well known to be given by 
the Dirac formula: 

K[Q] = 21/30~ ~ fQ4/3 dl, (1) 

where the ê« = ~T or ~~ are spin densities and « = (3/4)(3/rc)1/3 = 0.7386. Without 
modification this formula gives poor  results for atoms. Atoms are not uniform 
systems, and atoms do not possess translational symmetry. 
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Aside from the adjustment of « to give Slater's famous X« method [2], most 
suggestions for correcting Eq. (1) involve gradient corrections for nonuniformity 
and produce formulas containing integrals of V~ and its powers. Foremost 
among these is the formal gradient expansion [3], but there are also arguments 
based on wave-vector analysis [4], exchange hole behavior [5], or mainly 
empirical considerations [6, 7]. A formula due to Becke [7] currently has wide 
currency. All of these formulations involve even powers of Vê only, as a 
consequence of the translational invariance of the uniform reference system. 
There is a similar history of gradient corrections to the Thomas-Fermi  kinetic 
energy functional [1]. 

The question arises, for atoms, could there occur in the kinetic energy 
functional terms of the form: 

For a system with translational symmetry, such terms can not enter. However, 
for a system with spherical symmetry such terms might well enter. A hint of this 
is contained in an old paper by Langer [8] who pointed out that the difference 
between the quantum-mechanical l(l + 1) and the classical (l + 1/2) 2 corre- 
sponded to a kinetic energy increment acting like 1/r 2. Later, Kemister and 
Nordholm [9] introduced just such a term in a orte dimensional statistical model 
for atoms that treated the coordinate r statistically, and coordinates 0 and Ó 
quantum-mechanically. And then Deb and coworkers explicitly showed that 
addition of such a kinetic-energy term in the three dimensional Thomas-Fermi  
model gave good results [10, 11]. A corresponding term in the exchange would 
take the form: 

;f 
'VŒ 3 fO 2/3 

r2Q1/3 dF = --~ J 7  dF. (3) 

In this paper we study this term as a component in an approximate exchange 
functional. 

2 New first-order correction 

We write: 

K[Q] = 21/30~ ~ I'Qr/3 dr + Fx[QT, Q+, VQ,, Vp, . . . .  ], (4) 

where Fx[o,, ~ ,  VQ~, V~, . . . .  ] is an appropriate functional. We have: 

Fx[o,, 0+, 0, 0 . . . .  ] = 0, (5) 

which is automatically true for a homogeneous electron gas. That is to say, Fx is 
the inhomogeneous component of the exchange energy. A simple Fx is: 

[ "(vQ°)2 d,~ F~[Q~, ~~, V~T, VQ~, . .] = 2-1/~fl _ ~ j - ~ - j 3  • (6) 

This expression was first employed in its spin-unpolarized form by Herman et al. 
[3] in the so-called X«p self-consistent scheme. The fl value was determined in two 
wäys, atom by atom: (1) optimize fl by minimizing the total self-consistent X«~ 
energy with respect to the value of fl, or (2) fit the calculated Hartree-Fock 
(HF) energy to get the fl value. 
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For atoms we now propose considering an additional first-order gradient 
correction to the exchange. Namely, we set: 

~ [  ~" VQ~ o(Ve«) 2-] ,. 
Fx[F~' 0;' V0i" V0+ . . . .  l = 2-1/3 ~ J L - 7 " - v ~ ~ ' / ~ + " - ö U S J  a r ' r  O« (7) 

where fl and 7 are parameters to be determined. 
We note in passing that the first-order gradient correction is a lower bound 

to the second-order correction in systems with spherical symmetry. From the 
inequality [ 12]: 

fo~[4(~)~ (~)~]~r~0 ~8, 
for all f ( r )  with f ( o o ) = f ( 0 ) = 0 ,  we obtain the derived bound by letting 
f ( r )  = r e 1/3: 

Now we have: 

f (v°)~ d~ [~. vo 04/3 ~ --4 j r 2 e  1/3 dr. (9) 

f [  e.voo 1/3R (v0«) 2-] Kl01 = ~ 21/3~ù0ä/3 -- 2 '/37 r20~/~ + 2 -  ,~ ~ / 3  J d~, (10) 

where 2 is a parameter. If  2 = « the first term will be the Dirac exchange energy. 
The corresponding exchange potential is: 

6K 4 1/371 [4(V0a) 2 2V20«~ 
---a0 ~ 3(21/3 ~ 201/3 _ 2 re«2 1/3 -- 2-1/3fl [_ 3~$3- ~~75-/3 j . (11) 

This potential can be used in Kohn-Sham self-consistent calculations, though a 
modification must be made. The potential is divergent for both large r and small 
r. By introducing multiplicative factors as Herman et al. [3] have done, we can 
remove these divergences. 

3 Calculations 

One can determine the parameters 2, d, and 7 by minimizing the Kohn-Sham 
total energy with respect to the parameters or by requiring Kohn-Sham total 
energy to equal the corresponding Hartree-Fock total energy using the potential 
given by Eq. (11) with divergences removed. We will not do these things here. 
What we do, instead, is to fit the parameters so that the exchange energy given 
by Eq. (10) is as close to the corresponding Hartree-Fock exchange energy as 
possible. We use Hart ree-Fock densities throughout [16]. 

Results are summarized in Table 1. We have employed several ways to 
determine the parameters 2, d, and 7- The first- and the second-order gradient 
terms can be considered to be corrections to the Dirac exchange energy. In this 
case we fix 2 value at 0.7386, the Dirac value, and optimize either d, or 7, or 
both. We can also optimize the 2 value. Optimized values of parameters with 
corresponding averaged residues are given in Table 1. Optimization is carried out 
over all neutral atoms with nuclear charge Z - - 2 - 5 4  and 86. The quantities 
underlined in Table 1 are not optimized but are held fixed at the indicated values. 
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Table 1. The best coefficients in Eq. (10) determined by minimizing sum of fractional error squared of Eq. 
(10) relative to exact Har t ree -Fock  exchange energy for neutral atoms from He through Rn a 

Case A (LDA) B C D E F G H 

Œ 0.7386 0.7386 0.7386 0.7386 0.7939 0.7541 0.7438 0.7381 
B 0.0 0.00351 0.0 --0.00145 0.0 0.00269 0,0 -0 .00156 

0.0 0.0 0.01324 0.01866 0.0 0.0 0.01216 0.01915 
R b 5 .53E- -3  9 .23E - -5  9 . 3 3 E - - 6  1 .63E- -6  6 . 9 1 E - 4  1 .10E--5  2 . 8 8 E - - 6  1 . 6 2 E - 6  

a Numbers underlined held fixed at indicated values during optimization procedures 
b Average fitting residues as defined in the text 
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Fig. 1. Error percentages of exchange energies calculated from Eq. (10) vs. atomic number Z. 
Parameters given in Table 1. The LDA case, which has an error percentage of  about  10, is excluded. 
The zero line is the Hartree-Fock curve 

For example, in case B, /~ was optimized with fixed 2 and 7. Note  that the 
hydrogen atom is not included. The average residue, which is the quantity being 
minimized in the optimization process, is the average o f  fractional errors 
squared, over all the atoms. The error percentage is relative to the Hartree -Fock  
values. The error percentages are plotted in Fig. 1 with the L D A  cases excluded. 
The improvement of  any of  these gradient-corrected formulas over the LDA,  
which has an average error of  about 10 per cent, is evident. 

Note  that the first-order-gradient-only functional gives better results than the 
second-order-gradient-only functional for both fixed and optimized 2. Another 
fact of  interest is that the optimized 2 value is essentially the same as the 
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Table 2. Exchange energies for noble gas atoms: LDA, Second-order-only gradient correction (B), 
First-order-only gradient correction (C), full optimization of Eq. (10) (H), Langreth-Mehl (LM), 
Perdew-Wang (GGA), Becke, and Exact HF (Exact) 

Atom LDA B a C a H ~ LM b GGA c Becke a Exact 

He 0.884 1.065 1.040 1.029 1.015 1.033 1.025 1.026 
Ne 11.03 12.13 12.14 12.14 11.82 12.22 12.14 12.11 
Ar 27.86 29.97 30.09 30.13 29.39 30.29 30.15 30.19 
Kr 88.62 93.09 93.64 93.83 91.8 93.8 93.87 93.89 
Xe 170.6 177.6 178.6 178.9 175.6 178.6 179.0 179.2 
Rn 373.0 384.6 386.7 387.4 387.5 387.5 

a From Eq. (I0) with parameters as given in Table 1 
b Langreth-Mehl values from Refs. [4] and [5] 
° Perdew and Wang values from Ref. [5] 
« Becke values from Ref. [7] 

conventional Dirac value if all 2, /3, and 7 are optimized (Case H in Table 1). 
This demonstrates that the Dirac term is the natural leading term in the exchange 
energy. Given in Table 2 are exchange energies of Case A (LDA), B (second- 
order-gradient-only), C (first-order-gradient-only), and H (full optimization of 2, 
B, and 7) for noble gas atoms along with corresponding results of other 
sophisticated gradient corrections. We see that the first-order-gradient-only 
exchange energies are almost as good as Becke's and Perdew and Wang's 
corrected values and bettet than Langreth and Mehl's. In our calculations we use 
the spherically averaged Har t ree -Fock  spin-density of  the true ground-state 
configuration determined from a spin-polarized modification of the Fischer 
numerical Har t ree -Fock  program [13]. 

The value of  Ô in case F differs from values in Rel. [3] for two reasons. First, 
our calculations are spin-polarized, while those in Ref. [3] are not. Second, 
as described above the values in Ref. [3] were obtained by quite different 
methods. 

4 Discussion 

The superiority of the first-order-gradient-only exchange energy functional over 
the second-order-gradient-only one demonstrates the desirability of the inclusion 
of  a first-order gradient correction to the exchange energy functional for atoms. 
The presence of the first-order gradient correction term in both kinetic and 
exchange energy functional would be a manifestation of the relationship between 
the kinetic and the exchange energy functionals [14-17]. As a marter of fact we 
find that the "conjointness" between kinetic and exchange energies discovered 
earlier [17] is satisfied by the first-order-gradient-only functionals. With this 
conjointness we expect that the first-order correction to exchange energy reflects 
the angular dependence of the exchange energy. The angular dependence of  the 
corresponding term in the kinetic energy functional was discussed by Langer [8], 
Kemister and Nordholm [9], and Deb and coworkers [10, 11]. 

It is possible to write accurate or approximate density functionals in such a way 
that some components of them are symmetry-dependent. That is, there may be 
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components that dominate for one symmetry, vanish for another. For  example, 
nonuniform contributions completely disappear for a uniform system. The 
first-order gradient terms in Eqs. (2) and (3) are symmetry-dependent functionals 
with spherical symmetry elements built-in. A preliminary study of noninteracting 
electrons in a one-dimensional quantum weil shows that the symmetry-dependent 
component  of  the kinetic energy in fact dominates when we take the low density 
limit [18]. This confirms that a symmetry-adapted approximation would be here 
preferable. 

Note that we generally lose some required properties of  the exact energy 
functional whenever we make an approximation in the functional. The exact 
energy functional is universal, but approximations used in deriving approximate 
functionals need not be universal. Indeed, it may be expected for different 
approximations to work differently for different kinds of  systems. For  example, 
the LDA functional works weil for solids, badly for atomic systems. Thus we do 
not expect the first-order gradient correction of the present paper  to be appropri-  
ate for other than spherically symmetric systems. 

A universal functional as defined by Levy's constrained search method [19] is 
a complicated functional of  three-dimensional functions defined through manip- 
ulation of 3N-dimensional functions. This functional is defined point by point 
(that is, there is one definition for each density). A simple universal functional 
form for this functional may never be found even though it exists. Fortunately, 
systematic approximation of this functional is possible. What  we have illustrated 
in this paper is a way to approximate the exchange functional by including 
symmetry elements in the functional. In principle, symmetry-adapted functionals 
can be constructed from the constrained search method. Symmetric density 
comes from symmetric wavefunctions. So we imagine searching over all wave- 
functions of  a certain symmetry only. We first construct the point-by-point 
functional for all densities of  a certain symmetry. We then find a functional form 
which best fits this point-by-point functional. It  is easier to find an approximate 
functional representing a smaller domain of densities of  interest than one 
representing the whole density space. Such a symmetry-adapted functional may 
be quite reliable in its applicable domain. 

The first-order corrections to both kinetic and exchange energy functionals 
appear to merit more study. 
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